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We investigate guided modes in the asymmetric waveguide structure with a left-handed material (LHM)
layer surrounded by air and metal. A graphical method is proposed to determine the guided modes.
New properties of the oscillating and surface guided modes, such as absence of the fundamental mode,
coexistence of the oscillating and surface guided modes, fast attenuation of the surface guided modes, and
mode degeneracy, are analyzed in detail. We also investigate dispersive characteristics of the metal-LHM-
air optical waveguide. The propagation constant increases with decreasing slab thickness for the first-order
oscillating mode, which is different from that in traditional metal-cladding waveguides.
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Negative refractive index materials exhibit both nega-
tive dielectric permittivity and negative magnetic per-
meability, and thus possess a negative refractive index as
Veselago first predicted theoretically in 1968[1]. Since
electric and magnetic fields form a left set of vectors
with the wave vector, the novel materials are also called
left-handed materials (LHMs). Metamaterials are a spe-
cial class of negative refractive index materials with ar-
tificial electromagnetic properties defined by their sub-
wavelength structure. They are characterized by an ef-
fective negative refraction index that gives rise to extraor-
dinary properties such as backwards phase propagation
and negative refraction. The nonlinear effect in LHMs
has been investigated recently[2]. These unusual proper-
ties open up many possibilities for a wide range of appli-
cations, including invisibility cloaking[3], sub-diffraction
imaging[4,5], and microstrip patch antenna[6]. LHMs have
been realized through layering of resonant structures and
by using waveguides[7,8].

During the last decade, plasma utilizing surface plas-
mon polaritons (SPPs) supported at the metal-dielectric
interface has been attracting much renewed attention
worldwide. Metal-cladding waveguides have many appli-
cations due to their capacity to sustain SPP modes. The
confined SPPs in metal-insulator-metal waveguides can
act as an integrated electrical source[9]. Plasmonic fil-
ters based on the metal-insulator-metal waveguides have
been studied widely. In the case of metal-dielectric-metal
waveguides, they open up many possibilities for a wide
range of applications, including power splitters[10], novel
nanometeric plasmonic refraction index sensor[11], and
waveguide couplers[12].

Electromagnetic energy guidance in various structures,
including LHMs, is fundamental in photonic devices.
Guided modes in waveguides provide vital information
for future applications. Metal-LHM-dielectric waveguide
is a useful structure for electromagnetic energy trans-
mission. SPPs can be supported at the metal-LHM
interface and the LHM-dielectric interface[13]. While
the symmetric and asymmetric three-layer left-handed
waveguides have been investigated[14−19] and potential
applications have been put forward[20], the metal-LHM-

dielectric structure seems less studied. In this letter, we
consider the guided modes in an asymmetric three-layer
slab waveguide with a LHM layer surrounded by metal
and air. The graphical method is used to determine the
guided modes. Theoretical dispersive characteristics of
the metal-LHM-dielectric waveguide are presented.

An asymmetric metal-cladding waveguide structure is
shown in Fig. 1 with a LHM layer of width d surrounded
by semi-infinite air and metal. The LHM layer has neg-
ative permittivity ε1 and negative permeability µ1. The
metal has negative permittivity ε3 and positive perme-
ability µ3. For the transverse electric (TE) wave, the
electric field E is polarized along the y axis. Time
dependence of the monochromatic field is expressed as
exp(−iwt). The form of the mode propagating in the z
direction is E(x) exp[−i(wt − βz)], where β is the prop-
agation constant.

Electric field components in the three layers can be
written as

E1(x) = Be−iκ1x + Ceiκ1x(0 < x < d), (1)

E2(x) = De−P2(x−d)(x > d), (2)

E3(x) = AeP3x(x < 0), (3)

where P2 and P3 are evanescent coefficients correspond-
ing to the two claddings, which can be written as

Fig. 1. Geometry and notations for an asymmetric metal-
cladding waveguide with LHM layer.

1671-7694/2011/052301(4) 052301-1 c© 2011 Chinese Optics Letters



COL 9(5), 052301(2011) CHINESE OPTICS LETTERS May 10, 2011

P2 =
√

β2 − k2
0ε2µ2 and P3 =

√

β2 − k2
0ε3µ3, respec-

tively; κ1 is the transverse wave number in the waveg-
uide layer region, which can be expressed as κ1 =
√

k2
0ε1µ1 − β2; k0 represents the vacuum wave number,

and β is the propagation constant.
We match the corresponding boundary conditions at

x=0 and x=d from Eqs. (1)–(3) and obtain the disper-
sion equation
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When κ1 is real, allowable eigenmodes from Eq. (4) are
oscillating guided modes. To describe the right-hand side
(RHS) of Eq. (4) as a function of κ1d and facilitate the
discussion about the guided modes, we set

P2 =
√

k2
0(ε1µ1 − ε2µ2) − κ2

1,

P3 =
√

k2
0(ε1µ1 − ε3µ3) − κ2

1. (5)

With these notations in Eq. (5), the RHS of Eq. (4) be-
comes
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where a = k0d
√

ε1µ1 − ε2µ2, b = k0d
√

ε1µ1 − ε3µ3.
Wave number κ1 becomes purely imaginary when prop-

agation constant β exceeds a critical value, i.e., k1 = iα1.
In this case, determining the eigenmodes becomes
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Similarly, the RHS of Eq. (7) is defined as
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Shelby et al. fabricated structured LHMs having a
range of frequencies over which the refractive index was
predicted to be negative[21]. These structures used split
ring resonators to produce negative magnetic permeabil-
ity over a particular frequency region, and wire elements
to produce negative electric permittivity in an overlap-
ping frequency region. Permittivity and permeability of
the LHM layer can be obtained from the Drude model de-
scribing frequency dependencies of the structured LHM
characteristics

ε1(w) = 1 − w2
p

/

(w2 + iγ1w),

µ1(w) = 1 − F1w
2
/

(w2 − w2
0 + iΓ1w), (9)

where wp and w0 are the electronic and magnetic plasma
frequencies, γ1 and Γ1 are the damping rates relating to
the absorption of the material, F1 is connected with the

internal structure of the material, and w is the frequency
of incident light. Parameters for the internal structures
are wp = 10.0 GHz, w0 = 4.0 GHz, γ1 = 0.03wp, Γ1 =
0.03w0, and F1 = 0.56. Permittivity and permeability
of the LHM in the present waveguide structure can be
achieved for different frequencies of incident light. Metal
is one kind of single-negative material, and its parameters
can also be obtained from the frequency dependencies of
the negative electric permittivity.

Provided k2
0ε1µ1 > β2 > k2

0ε2µ2, oscillating guided
modes can exist in the LHM layer. Dispersion Eqs. (4)
and (7) are transcendental and cannot be solved analyti-
cally. Therefore, we use a graphical method to determine
the solution to κ1d for the guided modes. We plot the
tan(κ1d) and F (κ1d) dependencies on κ1d in Fig. 2.
With the parameters we obtain from Eq. (9), the κ1d
corresponding to the intersections can be obtained from
the graph directly. The intersections show the existence
of the guided modes.

We can examine the shape of the corresponding field
components. The transverse profiles, corresponding to
the four guided modes in Fig. 2 (i.e., TE2, TE3, TE4,
and TE5), are shown in Fig. 3. As these figures show, the
electric field oscillates in the LHM layer and is evanes-
cent outside the LHM region. The two peaks are clearly
asymmetric in Fig. 3(a) due to the asymmetries of the

Fig. 2. Graphical determination of κ1d for oscillating guided
modes of an asymmetric metal-cladding waveguide with LHM
layer. The parameters are w = 4.6 GHz, a2 = 1320, b2 = 270,
ε1 = −3.7, µ1 = −1; ε2 = 1, µ2 = 1; ε3 = −9.5, µ3 = 1.

Fig. 3. Transverse profiles of the guided modes corresponding
to the four intersections in Fig. 2. (a) TE2: κ1d = 3.45; (b)
TE3: κ1d = 6.91; (c) TE4: κ1d = 10.40; (d) TE5: κ1d =
13.98.
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structures. Electric field distributions of other guided
modes are also asymmetric. For w = 4.6 GHz and d =
1, we cannot find the oscillating modes TE1 and TE0.
TE1 exists for some particular parameters. The funda-
mental mode TE0 cannot be found for any parameters
in the present LHM waveguide, which is different from
the conventional metal cladding waveguide.

We plot the dependencies of tanh(α1d) and G(α1d) on
α1d for surface guided modes in Fig. 4. Intersections
show the existence of surface modes. When the frequency
of incident light 4.0 GHz < w < 4.7 GHz, there is no
intersection. For 5.1 GHz < w < 6.0 GHz, there is only
one intersection. For 4.7 GHz < w ≤ 5.1 GHz, there are
two intersections.

Fig. 4. Graphical determination of α1d for surface modes
of asymmetric metal-cladding LHM waveguides with LHM
layer for different frequencies. The parameters are (a) w =
4.7 GHz, a2 = 1250, b2 = 250; (b) w = 4.8 GHz, a2 = 1144,
b2 = 164; (c) w = 4.9 GHz, a2 = 1064, b2 = 124; (d) w = 5.0
GHz, a2 = 965, b2 = 65; (e) w = 5.1 GHz, a2 = 872, b2 = 12;
(f) w = 5.2 GHz, a2 = 801, b2 = –29.

Fig. 5. Transverse profiles for surface guided modes corre-
sponding to the two intersections in Fig. 4 for w = 5.0 GHz.
(a) TE0: α1d = 20.46; (b) TE1: α1d = 5.31.

Fig. 6. Transverse profile for the surface guided mode corre-
sponding to the intersection in Fig.4 for w = 5.2 GHz. TE0:
α1d = 8.90.

For w = 5.0 GHz, there are two intersections. Electric
field distributions corresponding to the two intersections
of the surface modes are shown in Fig. 5. They are sur-
face TE0 and TE1 modes. Field amplitudes evanesce
exponentially in the slab region and outside the slab
region for both surface modes. They evanesce quickly
especially near the interface between the LHM and air,
as seen in the insets of Fig. 5.

For w = 5.2 GHz, there is only one intersection (Fig. 4).
The corresponding electric field distribution of the sur-
face mode is plotted in Fig. 6.

To sum up, metal-LHM-air waveguide is a useful struc-
ture for the transmission of guided modes. Due to the
SPPs supported at the metal-LHM interface and at
the LHM-air interface, the metal-cladding left-handed
waveguides support both oscillating and surface guided
optical modes. The existence of various solutions on the
surface guided modes depends on the frequency of inci-
dent light and the waveguide structure.

We discuss the dependence of the propagation constant
β on the thickness d of the LHM layer in the asymmetric
metal-cladding left-handed waveguides. We can take a
comparison of the dispersive curves for the traditional
metal-cladding and that for metal-cladding left-handed
waveguides.

Dispersive curves of the traditional metal-cladding
and metal-cladding left-handed waveguides are shown
in Figs. 7 and 8, respectively. With the increase of prop-
agation constants β, the slab thickness d decreases for the

Fig. 7. Dispersive curves for TE guided modes of the metal-
cladding waveguide with w = 5.0 GHz, ε1 = 2.31, µ1 = 1; ε2 =
1, µ2 = 1; ε3 = −8, µ3 = 1.
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Fig. 8. Dispersive curves for TE guided modes of the metal-
cladding left-handed waveguides when (a) ω = 4.1 GHz, ε1

= –4.9, µ1 = –7.5; ε2 = 1, µ2 = 1; ε3 = –12, µ3 = 1; (b) ω =
4.6 GHz, ε1 = –3.7, µ1 = –1; ε2 = 1, µ2 = 1; ε3 = –9.5, µ3 = 1.

oscillating mode TE1, while the propagation constants
increase with increasing slab thickness in the traditional
metal-cladding waveguides. Furthermore, two different
propagation constants β correspond to the same thick-
ness d for the modes TE2 and TE3, which are shown in
the inset in Fig. 8(a). Mode degeneracy appears in the
metal-cladding left-handed waveguide, but does not al-
ways exist, as is shown in Fig. 8(b). Mode degeneracy
depends on the waveguide structure, especially the per-
mittivity and permeability of the LHM and metal.

In conclusion, asymmetric metal-cladding LHM waveg-
uides are investigated in detail in the letter. The exis-
tence and new properties of the guided modes are ana-
lyzed with a graphical method. The waveguide supports
both oscillating and surface guided modes. The existence
of various solutions on the surface guided modes depends
on the frequency of incident light and the waveguide
structure. With the increase of propagation constants,
the slab thickness decreases for the first-order oscillating
mode. New properties in the air-LHM-metal waveguide
may provide valuable information for its future applica-

tions in plasmonic filters and waveguide couplers.

This work was supported by the National Natural Sci-
ence Foundation of China (Nos. 60806041 and 60877055)
and the Innovation Funds for Graduates of Shanghai Uni-
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